Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Redox Biol ; 59: 102557, 2023 02.
Article in English | MEDLINE | ID: covidwho-2150474

ABSTRACT

Neutrophil and airway epithelial cell interactions are critical in the inflammatory response to viral infections including respiratory syncytial virus, Sendai virus, and SARS-CoV-2. Airway epithelial cell dysfunction during viral infections is likely mediated by the interaction of virus and recruited neutrophils at the airway epithelial barrier. Neutrophils are key early responders to viral infection. Neutrophil myeloperoxidase catalyzes the conversion of hydrogen peroxide to hypochlorous acid (HOCl). Previous studies have shown HOCl targets host neutrophil and endothelial cell plasmalogen lipids, resulting in the production of the chlorinated lipid, 2-chlorofatty aldehyde (2-ClFALD). We have previously shown that the oxidation product of 2-ClFALD, 2-chlorofatty acid (2-ClFA) is present in bronchoalveolar lavage fluid of Sendai virus-infected mice, which likely results from the attack of the epithelial plasmalogen by neutrophil-derived HOCl. Herein, we demonstrate small airway epithelial cells contain plasmalogens enriched with oleic acid at the sn-2 position unlike endothelial cells which contain arachidonic acid enrichment at the sn-2 position of plasmalogen. We also show neutrophil-derived HOCl targets epithelial cell plasmalogens to produce 2-ClFALD. Further, proteomics and over-representation analysis using the ω-alkyne analog of the 2-ClFALD molecular species, 2-chlorohexadecanal (2-ClHDyA) showed cell adhesion molecule binding and cell-cell junction enriched categories similar to that observed previously in endothelial cells. However, in contrast to endothelial cells, proteins in distinct metabolic pathways were enriched with 2-ClFALD modification, particularly pyruvate metabolism was enriched in epithelial cells and mitochondrial pyruvate respiration was reduced. Collectively, these studies demonstrate, for the first time, a novel plasmalogen molecular species distribution in airway epithelial cells that are targeted by myeloperoxidase-derived hypochlorous acid resulting in electrophilic 2-ClFALD, which potentially modifies epithelial physiology by modifying proteins.


Subject(s)
COVID-19 , Plasmalogens , Humans , Animals , Mice , Plasmalogens/chemistry , Plasmalogens/metabolism , Peroxidase/metabolism , Hypochlorous Acid/metabolism , Endothelial Cells/metabolism , COVID-19/metabolism , SARS-CoV-2/metabolism , Proteins/metabolism , Neutrophils/metabolism , Aldehydes/metabolism
2.
Thromb Haemost ; 122(10): 1683-1692, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1947710

ABSTRACT

BACKGROUND: Activated platelets have been implicated in the proinflammatory and prothrombotic phenotype of coronavirus disease 2019 (COVID-19). While it is increasingly recognized that lipids have important structural and signaling roles in platelets, the lipidomic landscape of platelets during infection has remained unexplored. OBJECTIVE: To investigate the platelet lipidome of patients hospitalized for COVID-19. METHODS: We performed untargeted lipidomics in platelets of 25 patients hospitalized for COVID-19 and 23 noninfectious controls with similar age and sex characteristics, and with comparable comorbidities. RESULTS: Twenty-five percent of the 1,650 annotated lipids were significantly different between the groups. The significantly altered part of the platelet lipidome mostly comprised lipids that were less abundant in patients with COVID-19 (20.4% down, 4.6% up, 75% unchanged). Platelets from COVID-19 patients showed decreased levels of membrane plasmalogens, and a distinct decrease of long-chain, unsaturated triacylglycerols. Conversely, platelets from patients with COVID-19 displayed class-wide higher abundances of bis(monoacylglycero)phosphate and its biosynthetic precursor lysophosphatidylglycerol. Levels of these classes positively correlated with ex vivo platelet reactivity-as measured by P-selectin expression after PAR1 activation-irrespective of disease state. CONCLUSION: Taken together, this investigation provides the first exploration of the profound impact of infection on the human platelet lipidome, and reveals associations between the lipid composition of platelets and their reactivity. These results warrant further lipidomic research in other infections and disease states involving platelet pathophysiology.


Subject(s)
Blood Platelets , COVID-19 , Blood Platelets/metabolism , Humans , Lipidomics , P-Selectin/metabolism , Plasmalogens/metabolism , Platelet Activation , Receptor, PAR-1/metabolism , Triglycerides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL